

Impedance Matching with Transmission Lines

useful functions and identities
Units
\square Constants

Table of Contents

I. Introduction
II. Inputs
III. Transmission Line Synthesis Function
IV. Single Shunt Stub Transmission Line Matching
V. Single Series Stub Transmission Line Matching
VI. 1/4 Wave Transformer Matching
VII. 1/4 Wave Binomial Transformer Matching
VIII. 1/4 Wave Chebyshev Transformer Matching
IX. Exponential Taper Matching Transformer
X. Triangular Taper Matching Transformer
XI. Klopfenstein Taper Matching Transformer
XII. Copyright and Trademark Notice

Introduction

Transmission lines have some special properties that can make them advantageous for impedance matching. First they can provide an open certain frequencies, and a short at others, making them useful for biasing, where an impedance needs to be a short at DC, but an open at a desired frequency. This property also allows them to short out harmonics of a signal, without attenuation of the desired signal. At very high frequencies ($>2 \mathrm{GHz}$), the physical dimensions of inductors and capacitor make them difficult to manufacture. At these frequencies, inductors and capacitors are replaced with transmission line, made cheap and small out of PC board.

Inputs

$\mathrm{Z}_{\mathrm{L}}:=100 \Omega$
$Z_{S}:=50 \Omega$
$S_{11 \text { max }}:=-10 \mathrm{~dB}$
$\mathrm{f}_{\mathrm{c}}:=1 \mathrm{GHz}$
$\Delta \mathrm{f}:=0.3 \mathrm{GHz}$
$\varepsilon_{\mathrm{r}}:=4.2$
$\mathrm{h}:=60 \mathrm{mil}$

Load Impedance
Source Impedance
Maximum Tolerable S11
Center Frequency
Bandwidth Needed
Relative Permittivity of LTCC
(Low Temperature Co-fired Ceramic)
PC Board Height for LTCC

Transmission Line Synthesis Function

$$
\mathrm{W}\left(\varepsilon_{\mathrm{r}}, \mathrm{~h}, \mathrm{Z}_{0}\right):=\left\{\begin{array}{l}
\mathrm{A} \leftarrow \frac{\mathrm{Z}_{0}}{600 \mathrm{ohm}} \cdot \sqrt{\frac{\varepsilon_{\mathrm{r}}+1}{2}}+\frac{\varepsilon_{\mathrm{r}}-1}{\varepsilon_{\mathrm{r}}+1} \cdot\left(0.23+\frac{0.11}{\varepsilon_{\mathrm{r}}}\right) \\
\mathrm{B} \leftarrow \frac{377 \mathrm{ohm} \cdot \pi}{2 \cdot \mathrm{Z}_{0} \cdot \sqrt{\varepsilon_{\mathrm{r}}}} \\
\mathrm{~W}_{1} \leftarrow \frac{8 \cdot \mathrm{e}^{\mathrm{A}} \cdot \mathrm{~h}}{2 \cdot \mathrm{~A}}-2 \\
\mathrm{e}_{2} \leftarrow \frac{2 \cdot \mathrm{~h}}{\pi} \cdot\left[\mathrm{~B}-1-\ln (2 \cdot \mathrm{~B}-1)+\frac{\varepsilon_{\mathrm{r}}-1}{2 \cdot \varepsilon_{\mathrm{r}}} \cdot\left(\ln (\mathrm{~B}-1)+0.39-\frac{0.61}{\varepsilon_{\mathrm{r}}}\right)\right] \\
\mathrm{W} \leftarrow \mathrm{if}\left(\frac{\mathrm{~W}_{1}}{\mathrm{~h}}<2, \mathrm{~W}_{1}, \mathrm{if}\left(\frac{\mathrm{~W}_{2}}{\mathrm{~h}}>2, \mathrm{~W}_{2}, 0 \mathrm{~m}\right)\right) \\
\mathrm{W}
\end{array}\right.
$$

Single Shunt Stub Transmission Line Matching

Fig. 1: Single open shunt stub matching
Here a stub and a transmission line are used to match a transmission line input, with characteristic impedance of Z_{S}, to a complex load of impedance Z_{L}. A open circuit stub, of length 1 , is placed at the input with a transmission line connecting it to the load with a length, d . Both transmission line segments have a characteristic impedance of Z_{S}. You little (choice ot two implementions) control over the bandwidth for single stub tuners.

$$
\begin{array}{lll}
\mathrm{W}_{\mathrm{val}}:=\mathrm{W}\left(\varepsilon_{\mathrm{r}}, \mathrm{~h}, \mathrm{Z}_{\mathrm{S}}\right) & \mathrm{W}_{\mathrm{val}}=3.016 \mathrm{~mm} & \text { Width of Transmission Lines } \\
\omega_{\mathrm{c}}:=2 \cdot \pi \cdot \mathrm{f}_{\mathrm{c}} & \omega_{\mathrm{c}}=6.283 \times 10^{9} \frac{\mathrm{rad}}{\mathrm{sec}} & \text { Center Frequency } \\
\lambda:=\frac{2 \cdot \pi \cdot \mathrm{c}}{\omega_{\mathrm{c}}} & \lambda=29.9 \mathrm{~cm} & \text { Wavelength in Free Space } \\
\mathrm{R}_{\mathrm{L}}:=\operatorname{Re}\left(\mathrm{Z}_{\mathrm{L}}\right) & \mathrm{R}_{\mathrm{L}}=100 \Omega & \text { Real Part of Load Impedance } \\
\mathrm{X}_{\mathrm{L}}:=\operatorname{Im}\left(\mathrm{Z}_{\mathrm{L}}\right) & \mathrm{X}_{\mathrm{L}}=0 \Omega & \text { Imag part of Load Impedance }
\end{array}
$$

When designing transmission line transformers, there are multiple solutions to the matching problem. For an example, an additional wavelength of transmission line can be added to yield the same matching, but with a different frequency response. This is usually not done to keep the area small. Here multiple solutions are presented.

$$
\begin{aligned}
& \mathrm{t}_{1}:= \frac{\mathrm{X}_{\mathrm{L}}+\sqrt{\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{Z}_{\mathrm{S}}} \cdot\left[\left(\mathrm{Z}_{\mathrm{S}}-\mathrm{R}_{\mathrm{L}}\right)^{2}+\mathrm{X}_{\mathrm{L}}^{2}\right]}}{\mathrm{R}_{\mathrm{L}}-\mathrm{Z}_{\mathrm{S}}} \\
& \mathrm{t}_{2}:=\frac{\mathrm{X}_{\mathrm{L}}-\sqrt{\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{Z}_{\mathrm{S}}} \cdot\left[\left(\mathrm{Z}_{\mathrm{S}}-\mathrm{R}_{\mathrm{L}}\right)^{2}+\mathrm{X}_{\mathrm{L}}^{2}\right]}}{\mathrm{R}_{\mathrm{L}}-\mathrm{Z}_{\mathrm{S}}}
\end{aligned}
$$

$$
\mathrm{t}_{1}=1.414 \quad \text { Coefficient for First Solution }
$$

$$
\mathrm{t}_{2}=-1.414
$$

Coefficient for Second Solution

$$
\begin{array}{ll}
\mathrm{d}_{1}:=\lambda \cdot \frac{1}{2 \cdot \pi} \cdot \operatorname{atan}\left(\mathrm{t}_{1}\right) & \mathrm{d}_{1}=4.546 \mathrm{~cm} \\
\mathrm{~d}_{2}:=\lambda \cdot \frac{1}{2 \cdot \pi} \cdot\left(\pi+\operatorname{atan}\left(\mathrm{t}_{2}\right)\right) & \mathrm{d}_{2}=10.404 \mathrm{~cm} \\
\mathrm{~B}_{\mathrm{s} 1}:=-\frac{\mathrm{R}_{\mathrm{L}} \cdot \mathrm{t}_{1}-\left(\mathrm{Z}_{\mathrm{S}}-\mathrm{X}_{\mathrm{L}} \cdot \mathrm{t}_{1}\right) \cdot\left(\mathrm{X}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{S}} \cdot \mathrm{t}_{1}\right)}{\mathrm{Z}_{\mathrm{S}} \cdot\left[\mathrm{R}_{\mathrm{L}}{ }^{2}+\left(\mathrm{X}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{S}} \cdot \mathrm{t}_{1}\right)^{2}\right]} & \frac{1}{\mathrm{~B}_{\mathrm{s} 1}}=-70.711 \mathrm{ohm} \\
\mathrm{~B}_{\mathrm{s} 2}:=-\frac{\mathrm{R}_{\mathrm{L}}}{2} \cdot \mathrm{t}_{2}-\left(\mathrm{Z}_{\mathrm{S}}-\mathrm{X}_{\mathrm{L}} \cdot \mathrm{t}_{2}\right) \cdot\left(\mathrm{X}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{S}} \cdot \mathrm{t}_{2}\right) \\
\mathrm{Z}_{\mathrm{S}} \cdot\left[\mathrm{R}_{\mathrm{L}}^{2}+\left(\mathrm{X}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{S}} \cdot \mathrm{t}_{2}\right)^{2}\right] & \\
\mathrm{l}_{\mathrm{o} 1}:=\frac{\lambda}{2 \cdot \pi} \cdot \operatorname{atan}\left(\mathrm{~B}_{\mathrm{s}} 1 \cdot \mathrm{Z}_{\mathrm{S}}\right) & \frac{1}{\mathrm{~B}_{\mathrm{s} 2}}=70.711 \mathrm{ohm} \\
\mathrm{I}_{\mathrm{S} 1}:=\frac{-\lambda}{2 \cdot \pi} \cdot \operatorname{atan}\left(\frac{1}{\mathrm{~B}_{\mathrm{s} 1} \cdot \mathrm{Z}_{\mathrm{S}}}\right) & \mathrm{l}_{\mathrm{o} 1}=-29.289 \mathrm{~mm} \\
\mathrm{l}_{\mathrm{o} 2}:=\frac{\lambda}{2 \cdot \pi} \cdot \operatorname{atan}\left(\mathrm{~B}_{\mathrm{s} 2} \cdot \mathrm{Z}_{\mathrm{S}}\right) & \mathrm{I}_{\mathrm{s} 1}=45.461 \mathrm{~mm} \\
\mathrm{I}_{\mathrm{s} 2}:=\frac{-\lambda}{2 \cdot \pi} \cdot \operatorname{atan}\left(\frac{1}{\mathrm{~B}_{\mathrm{s} 2} \cdot \mathrm{Z}_{\mathrm{S}}}\right) & \mathrm{l}_{\mathrm{o} 2}=29.289 \mathrm{~mm} \\
\hline
\end{array}
$$

Some solutions are not valid (negative lengths), so they are dropped:

$$
\begin{aligned}
& \mathrm{OK}_{1}:=\left(\mathrm{l}_{\mathrm{o} 1}>0\right) \cdot\left(\mathrm{d}_{1}>0\right) \\
& \mathrm{OK}_{2}:=\left(\mathrm{l}_{\mathrm{o} 2}>0\right) \cdot\left(\mathrm{d}_{2}>0\right) \\
& \mathrm{OK}_{3}:=\left(\mathrm{l}_{\mathrm{s} 1}>0\right) \cdot\left(\mathrm{d}_{1}>0\right) \\
& \mathrm{OK}_{4}:=\left(\mathrm{l}_{\mathrm{s} 2}>0\right) \cdot\left(\mathrm{d}_{2}>0\right) \\
& \text { Area } 1:=\left(\mathrm{l}_{\mathrm{o} 1}+\mathrm{d}_{1}\right) \cdot \mathrm{W}_{\mathrm{val}} \\
& \text { Area } 2:=\left(\mathrm{l}_{\mathrm{o} 2}+\mathrm{d}_{2}\right) \cdot \mathrm{W}_{\mathrm{val}} \\
& \text { Area }_{3}:=\left(\mathrm{l}_{\mathrm{s} 1}+\mathrm{d}_{1}\right) \cdot \mathrm{W}_{\mathrm{val}} \\
& \text { Area }_{4}:=\left(\mathrm{l}_{\mathrm{s} 2}+\mathrm{d}_{2}\right) \cdot \mathrm{W}_{\mathrm{val}}
\end{aligned}
$$

$\mathrm{OK}_{1}=0$
$\mathrm{OK}_{2}=1$
$\mathrm{OK}_{3}=1$
$\mathrm{OK}_{4}=0$

Area ${ }_{1}=0.488 \mathrm{~cm}^{2}$
Area $_{2}=4.021 \mathrm{~cm}^{2}$
Area3 $=2.742 \mathrm{~cm}^{2}$
Area $_{4}=1.767 \mathrm{~cm}^{2}$
$\mathrm{l}_{\mathrm{o} 1} \cdot \mathrm{~d}_{1}=-13.315 \mathrm{~cm}^{2}$
$\left.1_{\mathrm{n}}\right) \cdot \mathrm{d}_{\boldsymbol{\prime}}=30.472 \mathrm{~cm}^{2}$
$1_{\mathrm{s} 1} \cdot \mathrm{~d}_{1}=20.667 \mathrm{~cm}^{2}$
$1_{s} \cdot d_{2}=-47.297 \mathrm{~cm}^{2}$

Connecting Transmission L
(Solution \#1\&3)
Connecting Transmission L (Solution \#2\&4)

Susceptance of Stub (Solution \#1§

Susceptance of Stub (Solution \#2\&

Length of Open Circuit Stuk (Solution \#1)
Length of Short Circuit Stuk (Solution \#3)
Length of Open Circuit Stuk (Solution \#2)
Length of Short Circuit Stuk (Solution \#4)

Is Solution \#1 OK to use?
Is Solution \#2 OK to use?
Is Solution \#3 OK to use?
Is Solution \#4 OK to use?

Area for Solution \#1

Area for Solution \#2
Area for Solution \#1
Area for Solution \#2
Areas if white space is considered

Single Series Stub Transmission Line Matching

Fig. 1: Single series stub matching

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{L}}:=\operatorname{Re}\left(\frac{1}{\mathrm{Z}_{\mathrm{L}}}\right) \quad \mathrm{B}_{\mathrm{L}}:=\operatorname{Im}\left(\frac{1}{\mathrm{Z}_{\mathrm{L}}}\right) \\
& \mathrm{Y}_{\mathrm{S}}:=\frac{1}{\mathrm{Z}_{\mathrm{S}}} \\
& \mathrm{t}_{1}:=\frac{\mathrm{B}_{\mathrm{L}}+\sqrt{\frac{\mathrm{G}_{\mathrm{L}}}{\mathrm{Y}_{\mathrm{S}}} \cdot\left[\left(\mathrm{Y}_{\mathrm{S}}-\mathrm{G}_{\mathrm{L}}\right)^{2}+\mathrm{B}_{\mathrm{L}}^{2}\right]}}{\mathrm{G}_{\mathrm{L}}-\mathrm{Y}_{\mathrm{S}}} \\
& \mathrm{t}_{2}:=\frac{\mathrm{B}_{\mathrm{L}}-\sqrt{\frac{\mathrm{G}_{\mathrm{L}}}{\mathrm{Y}_{\mathrm{S}}} \cdot\left[\left(\mathrm{Y}_{\mathrm{S}}-\mathrm{G}_{\mathrm{L}}\right)^{2}+\mathrm{B}_{\mathrm{L}}^{2}\right]}}{\mathrm{G}_{\mathrm{L}}-\mathrm{Y}_{\mathrm{S}}}
\end{aligned}
$$

$$
\mathrm{d}_{1}:=\lambda \cdot \frac{1}{2 \cdot \pi} \cdot \operatorname{atan}\left(\mathrm{t}_{1}\right)
$$

$$
\mathrm{d}_{2}:=\lambda \cdot \frac{1}{2 \cdot \pi} \cdot\left(\pi+\operatorname{atan}\left(\mathrm{t}_{2}\right)\right)
$$

$$
X_{s 1}:=\frac{G_{L}{ }^{2} \cdot t_{1}-\left(Y_{S}-t_{1} \cdot B_{L}\right) \cdot\left(B_{L}+t_{1} \cdot Y_{S}\right)}{-Y_{S}\left[G_{L}{ }^{2}+\left(B_{L}+t_{1} \cdot Y_{S}\right)^{2}\right]}
$$

$$
\mathrm{X}_{\mathrm{s} 2}:=\frac{\mathrm{G}_{\mathrm{L}}^{2} \cdot \mathrm{t}_{2}-\left(\mathrm{Y}_{\mathrm{S}}-\mathrm{t}_{2} \cdot \mathrm{~B}_{\mathrm{L}}\right) \cdot\left(\mathrm{B}_{\mathrm{L}}+\mathrm{t}_{2} \cdot \mathrm{Y}_{\mathrm{S}}\right)}{-\mathrm{Y}_{\mathrm{S}}\left[\mathrm{G}_{\mathrm{L}}{ }^{2}+\left(\mathrm{B}_{\mathrm{L}}+\mathrm{t}_{2} \cdot \mathrm{Y}_{\mathrm{S}}\right)^{2}\right]}
$$

$$
\mathrm{l}_{\mathrm{o} 1}:=\frac{-\lambda}{2 \cdot \pi} \cdot \operatorname{atan}\left(\frac{\mathrm{Z}_{\mathrm{S}}}{\mathrm{X}_{\mathrm{S} 1}}\right)
$$

$$
\mathrm{I}_{\mathrm{s} 1}:=\frac{\lambda}{2 \cdot \pi} \cdot \operatorname{atan}\left(\frac{\mathrm{X}_{\mathrm{s} 1}}{\mathrm{Z}_{\mathrm{S}}}\right)
$$

$$
\mathrm{I}_{\mathrm{o} 2}:=\frac{-\lambda}{2 \cdot \pi} \cdot \operatorname{atan}\left(\frac{\mathrm{Z}_{\mathrm{S}}}{\mathrm{X}_{\mathrm{s} 2}}\right)
$$

$$
\mathrm{I}_{\mathrm{s} 2}:=\frac{\lambda}{2 \cdot \pi} \cdot \operatorname{atan}\left(\frac{\mathrm{X}_{\mathrm{s} 2}}{\mathrm{Z}_{\mathrm{S}}}\right)
$$

$$
\mathrm{OK}_{1}:=\left(\mathrm{l}_{\mathrm{o} 1}>0\right) \cdot\left(\mathrm{d}_{1}>0\right)
$$

$$
\mathrm{OK}_{2}:=\left(\mathrm{l}_{\mathrm{o} 2}>0\right) \cdot\left(\mathrm{d}_{2}>0\right)
$$

$$
\mathrm{OK}_{3}:=\left(\mathrm{l}_{\mathrm{s} 1}>0\right) \cdot\left(\mathrm{d}_{1}>0\right)
$$

$$
\mathrm{OK}_{4}:=\left(\mathrm{l}_{\mathrm{s} 2}>0\right) \cdot\left(\mathrm{d}_{2}>0\right)
$$

$$
\text { Area }_{1}:=\left(\mathrm{l}_{\mathrm{o} 1}+\mathrm{d}_{1}\right) \cdot \mathrm{W}_{\text {val }}
$$

$$
\text { Area }_{2}:=\left(\mathrm{l}_{\mathrm{o} 2}+\mathrm{d}_{2}\right) \cdot \mathrm{W}_{\mathrm{val}}
$$

$$
\text { Area } 3:=\left(1_{\mathrm{s} 1}+\mathrm{d}_{1}\right) \cdot \mathrm{W}_{\text {val }}
$$

$$
\text { Area }_{4}:=\left(\mathrm{l}_{\mathrm{s} 2}+\mathrm{d}_{2}\right) \cdot \mathrm{W}_{\mathrm{val}}
$$

Load Conductance and Suseptance
Source Admittance

Coefficient for First Solution

Coefficient for Second Solution

$\mathrm{d}_{1}=-2.929 \mathrm{~cm}$	Connecting Transmission Line (Solution \#1\&3)
$\mathrm{d}_{2}=17.879 \mathrm{~cm}$	Connecting Transmission Line (Solution \#2\&4)

$\mathrm{X}_{\mathrm{s} 1}=-35.355 \Omega$ Stub Reactance (Solution \#1)
$\mathrm{X}_{\mathrm{s} 2}=35.355 \Omega$ Stub Reactance (Solution \#2)
$\mathrm{l}_{\mathrm{o} 1}=45.461 \mathrm{~mm}$
$1_{\mathrm{s} 1}=-29.289 \mathrm{~mm}$
$\mathrm{l}_{\mathrm{o} 2}=-45.461 \mathrm{~mm}$
$1_{\mathrm{s} 2}=29.289 \mathrm{~mm}$
$\mathrm{OK}_{1}=0$
$\mathrm{OK}_{2}=0$
$\mathrm{OK}_{3}=0$
$\mathrm{OK}_{4}=1$
Area ${ }_{1}=0.488 \mathrm{~cm}^{2}$
Area $_{2}=4.021 \mathrm{~cm}^{2}$
Area ${ }_{3}=-1.767 \mathrm{~cm}^{2}$
Area $_{4}=6.276 \mathrm{~cm}^{2}$

Length of Open Circuit Stub (Solution \#1)
Length of Short Circuit Stub (Solution \#3)
Length of Open Circuit Stub (Solution \#2)
Length of Short Circuit Stub (Solution \#4)
Is Solution \#1 OK to use?
Is Solution \#2 OK to use?
Is Solution \#3 OK to use?
Is Solution \#4 OK to use?
Area for Solution \#1
Area for Solution \#2
Area for Solution \#1
Area for Solution \#2

1/4 Wave Transformer Matching

Fig. 1: Single shunt stub matching
No control over bandwidth achieved
$\Delta \mathrm{f}_{-} \mathrm{f}_{\mathrm{c}}:=\frac{\Delta \mathrm{f}}{\mathrm{f}_{\mathrm{c}}}$
$\Gamma_{\text {max }}:=10^{\frac{S_{11 \text { max }}}{10}}$
$\Gamma_{\max }=0.1$
$\mathrm{Z}_{1 _4}=70.711 \Omega$
$\Delta \mathrm{f}_{-} \mathrm{f}_{\mathrm{cmax}}:=2-\frac{4}{\pi} \cdot \operatorname{acos}\left(\frac{\Gamma_{\max }}{\sqrt{1-\Gamma_{\max }^{2}}} \cdot \frac{2 \cdot \sqrt{\mathrm{Z}_{\mathrm{S}} \cdot \mathrm{Z}_{\mathrm{L}}}}{\left|\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{\mathrm{S}}\right|}\right)$
$\Delta \mathrm{f}_{\mathrm{-}} \mathrm{f}_{\mathrm{c}}=30 \%$
$\mathrm{Z}_{1 _4}:=\sqrt{\mathrm{Z}_{\mathrm{S}} \cdot \mathrm{Z}_{\mathrm{L}}}$

OK $:=\Delta \mathrm{f}_{-} \mathrm{f}_{\mathrm{cmax}}>\Delta \mathrm{f}_{\mathrm{f}} \mathrm{f}_{\mathrm{c}}$
$\beta:=\frac{2 \cdot \pi}{\lambda} \cdot \sqrt{\varepsilon_{\mathrm{r}}}$
len $:=\frac{\lambda}{4}$
$\mathrm{Wval}:=\mathrm{W}\left(\varepsilon_{\mathrm{r}}, \mathrm{h}, \mathrm{Z}_{1 _4}\right)$
Area := len•Wval
Outputs

$$
\begin{aligned}
& \mathrm{Z}_{1 _4}=70.711 \Omega \\
& \mathrm{OK}=1 \\
& \text { Area }=1.203 \mathrm{~cm}^{2}
\end{aligned}
$$

Fractional Bandwidth Needed

Reflection Coefficient Needed
Impedance of Quarter Wave Transn

Actual Bandwidth

OK to use this circuit?
Phase Constant (Wave Number)
Length of Transformer
Width of Transformer
Area of Transformer

Impedance of Line
OK to use this circuit?
Area of Transformer

1/4 Wave Binomial Transformer Matching

Fig. 1: 1/4 wave binomial transformer matching

$$
\begin{array}{lll}
\Gamma_{\mathrm{DC}}:=\frac{\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{\mathrm{S}}}{\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{S}}} & \Gamma_{\mathrm{DC}}=0.333 & \text { DC Reflection Coefficient } \\
\frac{\ln \left(\frac{\Gamma_{\text {max }}}{\left|\Gamma_{\mathrm{DC}}\right|}\right)}{\ln \left[\cos \left[\frac{\pi}{2} \cdot\left(1-\frac{\Delta \mathrm{f}_{-} \mathrm{f}_{\mathrm{c}}}{2}\right)\right]\right.}=0.828 & & \text { Fractional Order Needed } \\
\left.\left.\mathrm{N}:=\operatorname{ceil}\left[\frac{\ln \left(\frac{\Gamma_{\max }}{\left|\Gamma_{\mathrm{DC}}\right|}\right)}{\ln \left[\operatorname { c o s } \left[\frac{\pi}{2} \cdot\left(1-\frac{\Delta \mathrm{f}_{-} \mathrm{f}_{\mathrm{c}}}{2}\right)\right.\right.}\right)\right]\right] & \mathrm{N}=1 & \text { Order Estimation } \\
\mathrm{A}(\mathrm{~N}):=2^{-\mathrm{N}} \cdot \Gamma_{\mathrm{DC}} & \mathrm{~A}(\mathrm{~N})=0.167 & \text { Binomial Coefficient } \\
\Delta \mathrm{f}_{-} \mathrm{f}_{\mathrm{c}}(\mathrm{~N}):=2-\frac{4}{\pi} \cdot \operatorname{acos}\left[\frac{1}{2} \cdot\left(\frac{\Gamma_{\max }}{|\mathrm{A}(\mathrm{~N})|}\right)^{\mathrm{N}}\right] & \Delta \mathrm{f}_{-} \mathrm{f}_{\mathrm{c}}(\mathrm{~N})=38.795 \% & \text { Actual Fractional Bandwic }
\end{array}
$$

$\mathrm{i}:=0$.. ($\mathrm{N}-1$)
$C(n, N):=\frac{N!}{(N-n)!\cdot n!}$
$\Gamma(\mathrm{n}, \mathrm{N}):=\mathrm{A}(\mathrm{N}) \cdot \mathrm{C}(\mathrm{n}, \mathrm{N})$
$\Gamma(\mathrm{i}, \mathrm{N})=$ 0.167

Index Vector
Binomial Coefficients

Reflection Coefficients
$\mathrm{j}:=1 . . \mathrm{N}$
$\mathrm{Z}:=\left\lvert\, \begin{aligned} & \mathrm{Zval}_{0} \leftarrow \mathrm{Z}_{\mathrm{S}} \\ & \text { for } \mathrm{i} \in 0 . .(\mathrm{N}-1) \\ & \text { Zval }_{\mathrm{i}+1} \leftarrow \mathrm{Zval}_{\mathrm{i}} \cdot\left(\frac{\Gamma(\mathrm{i}, \mathrm{N})+1}{1-\Gamma(\mathrm{i}, \mathrm{N})}\right) \\ & \text { Zval }\end{aligned}\right.$

T-Line Impedances

$\mathrm{Wval}=\binom{0}{1.643} \mathrm{~mm} \quad$ Widths of Transmission Line Segme Maximum Width
len $=7.475 \mathrm{~cm} \quad$ Length of Transformer
Area $=1.228 \mathrm{~cm}^{2} \quad$ Area of Transformer

Outputs
Wval $=\binom{0}{1.643} \mathrm{~mm}$
len $=7.475 \mathrm{~cm}$
Area $=1.228 \mathrm{~cm}^{2}$
$\mathrm{Wval}_{\mathrm{j}}:=\mathrm{W}\left(\varepsilon_{\mathrm{r}}, \mathrm{h}, \mathrm{Z}_{\mathrm{j}}\right)$
$\max ($ Wval $)=1.643 \mathrm{~mm}$
len $:=\frac{\lambda}{4} \cdot \mathrm{~N}$
Area $:=$ len $\cdot \max ($ Wval $)$

Widths of Line Segments Length of Transformer Area of Transformer

1/4 Wave Chebyshev Transformer Matching

Fig. 1: 1/4 wave chebyshev transformer matching
$\frac{\operatorname{acosh}\left(\frac{\left|\Gamma_{\mathrm{DC}}\right|}{\Gamma_{\max }}\right)}{\operatorname{acosh}\left[\sec \left[\frac{\pi}{2} \cdot\left(1-\frac{\Delta \mathrm{f}}{2 \cdot \mathrm{f}_{\mathrm{c}}}\right)\right]\right]}=0.878$

Fractional Order Needed
$\mathrm{N}=1$
Order Estimation
$\mathrm{N}=2$
$\mathrm{N}:=\operatorname{if}(\mathrm{N}>2, \mathrm{~N}, 2)$
$\Delta \mathrm{f}_{-} \mathrm{f}_{\mathrm{c}}(\mathrm{N}):=2-\frac{4}{\pi} \cdot \operatorname{asec}\left(\cosh \left(\frac{1}{\mathrm{~N}} \cdot \operatorname{acosh}\left(\frac{\left|\Gamma_{\mathrm{DC}}\right|}{\Gamma_{\max }}\right)\right)\right)$

$\mathrm{A}:=\Gamma_{\max }$
$A=0.1 \quad$ Transformer Coefficient
$\left.\theta_{\max }:=\operatorname{asec}\left(\cosh \left(\frac{1}{\mathrm{~N}} \cdot \operatorname{acosh}\left(\frac{\ln \left(\frac{\mathrm{Z}_{\mathrm{L}}}{\mathrm{Z}_{\mathrm{S}}}\right)}{2 \cdot \Gamma_{\max }}\right)\right)\right)\right)$
$\theta_{\max }=47.993 \mathrm{deg}$
$\mathrm{T}(\mathrm{n}, \mathrm{x}):=\mathrm{if}(|\mathrm{x}|<1, \cos (\mathrm{n} \cdot \operatorname{acos}(\mathrm{x})), \cosh (\mathrm{n} \cdot \operatorname{acosh}(\mathrm{x})))$ $\mathrm{i}:=0 . . \mathrm{N}$

$$
\Gamma(\mathrm{n}):=\left\lvert\, \begin{aligned}
& \frac{\mathrm{A}}{2} \cdot \sec \left(\theta_{\max }\right)^{3} \text { if } \mathrm{n}=0 \\
& \frac{3}{2} \cdot \mathrm{~A} \cdot\left(\sec \left(\theta_{\max }\right)^{3}-\sec \left(\theta_{\max }\right)\right) \text { if } \mathrm{n}=1 \\
& \frac{3}{2} \cdot \mathrm{~A} \cdot\left(\sec \left(\theta_{\max }\right)^{3}-\sec \left(\theta_{\max }\right)\right) \text { if } \mathrm{n}=2 \\
& \frac{\mathrm{~A}}{2} \cdot \sec \left(\theta_{\max }\right)^{3} \text { if } \mathrm{n}=3
\end{aligned}\right.
$$

$\Gamma(\mathrm{i})=$

0.167
0.276
0.276

$\mathrm{j}:=1 . . \mathrm{N}$
$\mathrm{Z}:=\left\{\begin{array}{l}\mathrm{Zval}_{0} \leftarrow \mathrm{Z}_{\mathrm{S}} \\ \text { for } \mathrm{i} \in 0 . . \mathrm{N}-1 \\ \text { Zval }_{\mathrm{i}+1} \leftarrow \text { Zval. }_{\mathrm{i}} \cdot \mathrm{e}^{2 \cdot \Gamma(\mathrm{i})} \\ \text { Zval }\end{array}\right.$
$\mathrm{Wval}_{\mathrm{j}}:=\mathrm{W}\left(\varepsilon_{\mathrm{r}}, \mathrm{h}, \mathrm{Z}_{\mathrm{j}}\right)$
$\max (\mathrm{Wval})=1.652 \mathrm{~mm}$
len $:=\frac{\lambda}{4} \cdot \mathrm{~N}$
Area := len $\cdot \max (\mathrm{Wval})$

Chebyshev Polynomial Coefficients Index Vector

Reflection Coefficients

$Z_{j}=$	Transmission Line Impedances
69.803	
121.31	

Wval $=\left(\begin{array}{c}0 \\ 1.652 \\ 0.401\end{array}\right) \mathrm{mm} \quad$ Widths of Transmission Line Segme
Maximum Width
Length of Transformer
Area of Transformer

Outputs

len $=14.95 \mathrm{~cm}$
Area $=2.47 \mathrm{~cm}^{2}$
Widths of Transmission Line
Segments
Length of Transformer
Area of Transformer

Exponential Taper Matching Transformer

Fig. 1: Exponential transformer matching
$\mathrm{L}:=\frac{\pi}{\beta}$
$\mathrm{L}_{2}:=\frac{2 \cdot \pi}{\beta}$
$Z(z):=Z_{S} \cdot e^{\frac{1}{L} \cdot \ln \left(\frac{Z_{L}}{Z_{S}}\right) \cdot z}$

$\mathrm{W}\left(\varepsilon_{\mathrm{r}}, \mathrm{h}, \mathrm{Z}(0 \mathrm{~cm})\right)=3.016 \mathrm{~mm}$
$\mathrm{W}\left(\varepsilon_{\mathrm{r}}, \mathrm{h}, \mathrm{Z}(\mathrm{L})\right)=0.714 \mathrm{~mm}$
TotArea $:=\mathrm{L} \cdot \mathrm{W}\left(\varepsilon_{\mathrm{r}}, \mathrm{h}, \mathrm{Z}(0 \mathrm{~cm})\right)$

$$
\begin{aligned}
& \mathrm{L}=7.295 \mathrm{~cm} \quad \text { Length of Transformer (Option \#1: } \beta \mathrm{L}=\pi \text {) } \\
& \mathrm{L}_{2}=14.59 \mathrm{~cm} \quad \text { Length of Transformer (Option \#2: } \beta \mathrm{L}=2 \pi \\
& \quad \frac{1}{\mathrm{~L}_{2}} \cdot \ln \left(\frac{\mathrm{Z}_{\mathrm{L}}}{\mathrm{Z}_{\mathrm{S}}}\right) \cdot \mathrm{z} \\
& \mathrm{Z}_{2}(\mathrm{z}):=\mathrm{Z}_{\mathrm{S}} \cdot \mathrm{e}
\end{aligned}
$$

Width at Beginning of Taper
Width at End of Taper
TotArea $=2.2 \mathrm{~cm}^{2}$
Total Area of Transformer

Triangular Taper Matching Transformer

Fig. 1: Triangular transformer matching

$$
\mathrm{L}:=\frac{2 \cdot \pi}{\beta} \quad \mathrm{~L}=14.59 \mathrm{~cm} \quad \text { Length of Transformer (Option \#1 }
$$

$$
\mathrm{Z}(\mathrm{z}):=\operatorname{if}\left[\mathrm{z}<\frac{\mathrm{L}}{2}, \mathrm{Z}_{\mathrm{S}} \cdot \mathrm{e}^{\left.\left.\left.2 \cdot\left(\frac{\mathrm{z}}{\mathrm{~L}}\right)^{2} \cdot \ln \left(\frac{\mathrm{Z}_{\mathrm{L}}}{\mathrm{Z}_{\mathrm{S}}}\right)_{, Z_{\mathrm{S}} \cdot \mathrm{e}}^{\left.\left[4 \cdot \frac{\mathrm{z}}{\mathrm{~L}}-2 \cdot\left(\frac{\mathrm{z}}{\mathrm{~L}}\right)^{2}-1\right] \cdot \ln \left(\frac{\mathrm{Z}_{\mathrm{L}}}{\mathrm{Z}_{\mathrm{S}}}\right)\right]}\right] .\right] .\right] ~}\right.
$$

$\mathrm{W}\left(\varepsilon_{\mathrm{r}}, \mathrm{h}, \mathrm{Z}(0 \mathrm{~cm})\right)=3.016 \mathrm{~mm}$
$\mathrm{W}\left(\varepsilon_{\mathrm{r}}, \mathrm{h}, \mathrm{Z}(\mathrm{L})\right)=0.714 \mathrm{~mm}$
TotArea $:=\mathrm{L} \cdot \mathrm{W}\left(\varepsilon_{\mathrm{r}}, \mathrm{h}, \mathrm{Z}(0 \mathrm{~cm})\right)$

Width at Beginning of Taper
Width at End of Taper
Total Area of Transformer

Klopfenstein Taper Matching Transformer

Fig. 1: Klopfenstein transformer matching

Copyright and Trademark Notice

All software and other materials included in this document are protected by copyright, and are owned or controlled by Circuit Sage.

The routines are protected by copyright as a collective work and/or compilation, pursuant to federal copyright laws, international conventions, and other copyright laws. Any reproduction, modification, publication, transmission, transfer, sale, distribution, performance, display or exploitation of any of the routines, whether in whole or in part, without the express written permission of Circuit Sage is prohibited.

